Excitonic effects in the optical conductivity of gated graphene.

نویسندگان

  • N M R Peres
  • R M Ribeiro
  • A H Castro Neto
چکیده

We study the effect of electron-electron interactions in the optical conductivity of graphene under an applied gate and derive a generalization of Elliott's formula, commonly used for semiconductors, for the optical intensity. We show that excitonic resonances are responsible for several features of the experimentally measured midinfrared response of graphene such as the increase of the conductivity beyond the universal value above the Fermi blocked regime, the broadening of the absorption at the threshold, and the decrease of the optical conductivity at higher frequencies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STUDY OF ELECTRON-ELECTRON (e-e) AND ELECTRON-HOLE (e-h) INTERACTIONS IN GRAPHENE ON SIO2/SI INTERFACES USING SPECTROSCOPY ELLIPSOMETRY

Graphene is a two-dimensional carbon honeycomb structure that gained popularity due to its excellent electronic properties, such as the ballistic electron transport and outstanding optical and mechanical properties [1]. In this thesis, we study the optical properties of graphene on SiO2/Si using spectroscopic ellipsometry. Our results show that many body effects, in particular the electron-elec...

متن کامل

Mono-Mono-Mono and Bi-Bi-Bi three-layer graphene systems’ optical conductivity

Investigating the longitudinal optical conductivity of graphene systems, which is the mostimportant property for opto-electronic devices, for three-layer graphene systems theoretically and numerically is the main purpose of this study. Each layer can be mono- or bi-layer graphene. Separation between layers has been denoted by d, selected to be about ten nanometers. The carrier densities i...

متن کامل

Van Hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene.

We report a systematic study of the optical conductivity of twisted bilayer graphene (tBLG) across a large energy range (1.2-5.6 eV) for various twist angles, combined with first-principles calculations. At previously unexplored high energies, our data show signatures of multiple van Hove singularities (vHSs) in the tBLG bands as well as the nonlinearity of the single layer graphene bands and t...

متن کامل

Investigating the Longitudinal Optical Conductivity in Three-Layer Graphene Systems with Composes Mono-Bi-Bi and Bi-Mono-Bi and Bi-Bi-Mono

The longitudinal optical conductivity is the most important property for graphene-baseddevices. So investigating this property for spatially separated few-layer graphene systems analytically and numerically is the main purpose of our study. Each layer can be mono- or bi-layer graphene. The density-density correlation function has been screened by the dielectric function using the random p...

متن کامل

Magneto-optical response of graphene: Probing substrate interactions

Magneto-optical transitions between Landau levels can provide precise spectroscopic information on the electronic structure and excitation spectra of graphene, enabling probes of substrate and many-body effects. We calculate the magneto-optical conductivity of large-size graphene flakes using a tight-binding approach. Our method allows us to directly compare the magneto-optical response of an i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 105 5  شماره 

صفحات  -

تاریخ انتشار 2010